

Paradoxical CysLT₂R Antagonism by Leukotriene D₄ Limits Platelet-Dependent LTC₄-driven lung immunopathology

Tao Liu^{1,3}, Junrui Lin^{1,3}, Chunli Feng^{1,3}, Nora Barrett^{1,2,3}, Tanya Laidlaw^{1,2,3}, Joshua Boyce^{1,2,3}

Departments of ¹Medicine, ²Pediatrics, Harvard Medical School, Boston; ³Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston

Introduction

The three cysteinyl leukotrienes (cysLTs), (LT)C₄, LTD₄, and LTE₄, have different biological half-lives, cellular targets, and receptor specificities. LTC₄, but not LTD₄, activates platelets and elicits their CysLT₂R-dependent release of IL-33 ex vivo. LTC₄ strongly potentiates allergen-induced pulmonary eosinophilia through a CysLT₂R-mediated, platelet- and interleukin-33 dependent pathway in vivo that is not recapitulated by LTD₄. We now report that LTD₄ unexpectedly behaves as a functional antagonist for LTC₄ signaling at CysLT₂R in vitro and in vivo.

Methods

Mouse platelets were stimulated for surface CD62P and HMGB1 by FACS analysis. Ovalbumin(OVA)-sensitized wild-type mice were challenged with aerosolized LTs for lung inflammation determination. Airway resistance (R_L) in response to lysine aspirin (Lys-ASA) challenge was assessed in *Ptges*^{-/-} mice with an Invasive Pulmonary Function Device, and R_I was recorded for 45 min.

Results

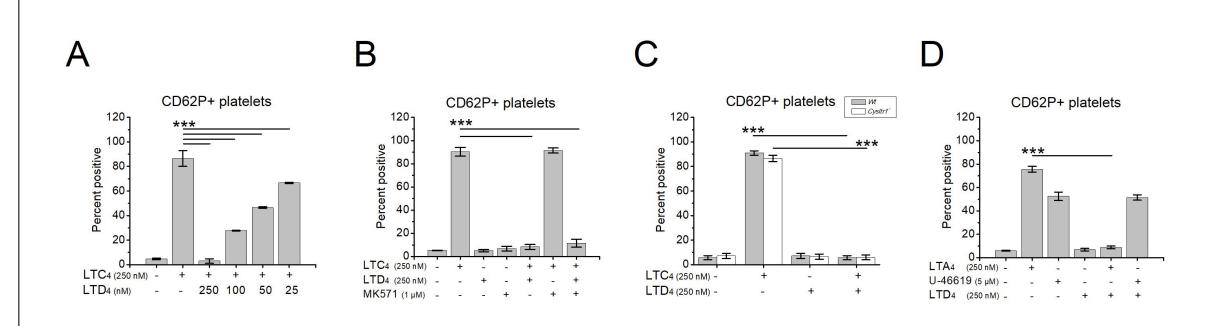
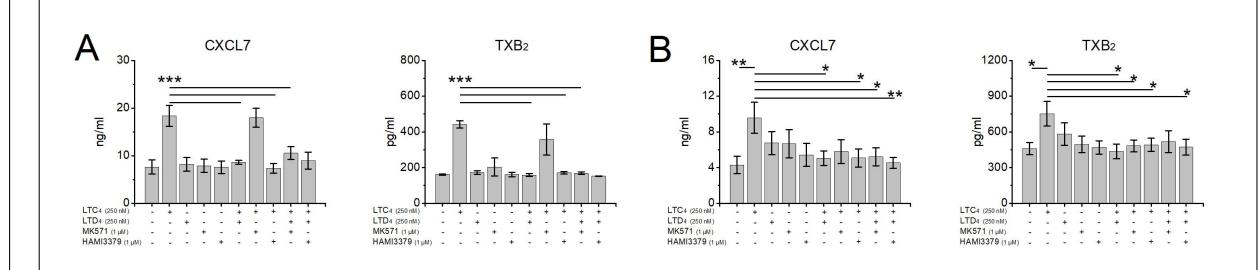
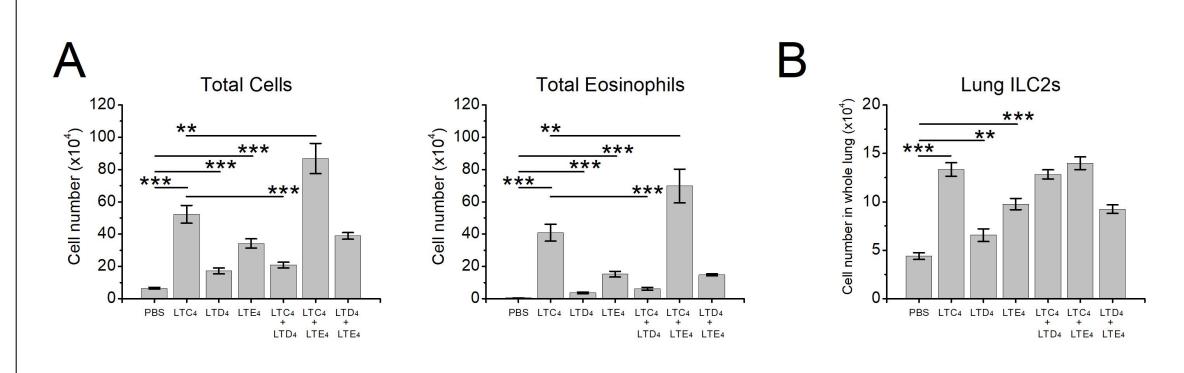
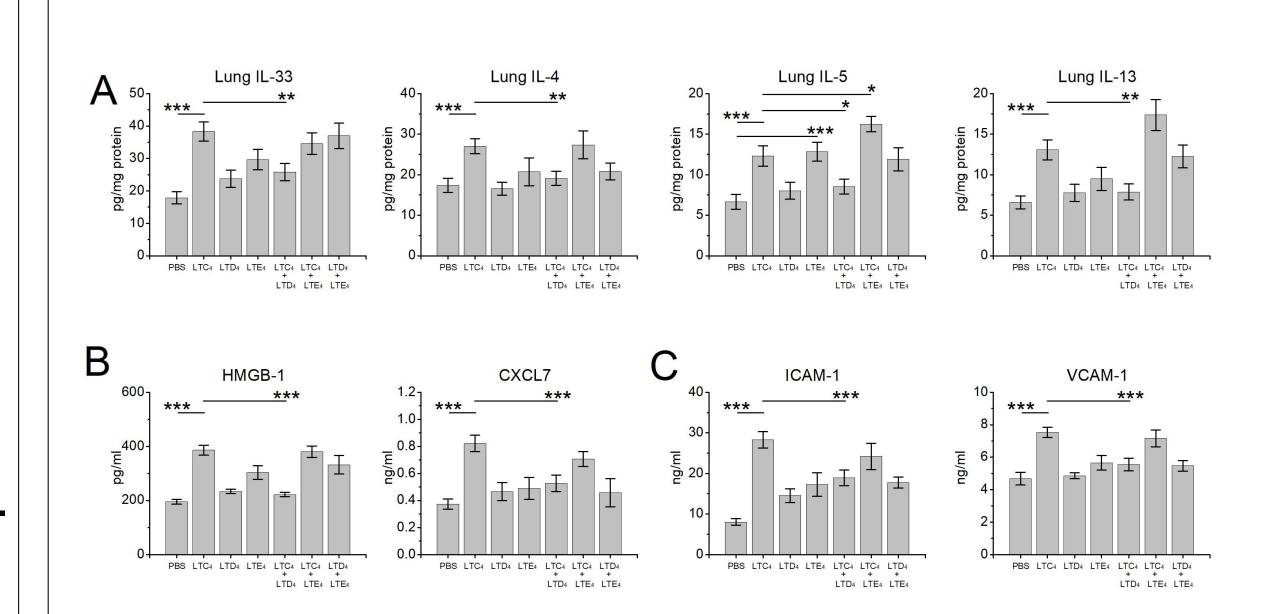


Figure 1. LTD₄ blocks LTC₄/CysLT₂R-dependent platelet activation. Platelet rich plasma from the indicated mouse strains was stimulated with LTC₄ (250 nM) for 10 min with or without the simultaneous addition of the indicated agonists and antagonists. Surface expression of CD62P was monitored by flow cytometry. A. Dose-dependent effect of LTD₄ on LTC₄-elicited expression of CD62P. B. Lack of effect of the CysLT₁R-selective antagonist MK571 on LTC₄-elciited CD62P expression and its suppression by LTD₄. C. Lack of effect of Cysltr1 deletion on LTC₄-elicited CD62P expression. D. Effect of LTD₄ on CD62P expression elicited by the indicated agonists. ***p<0.001.

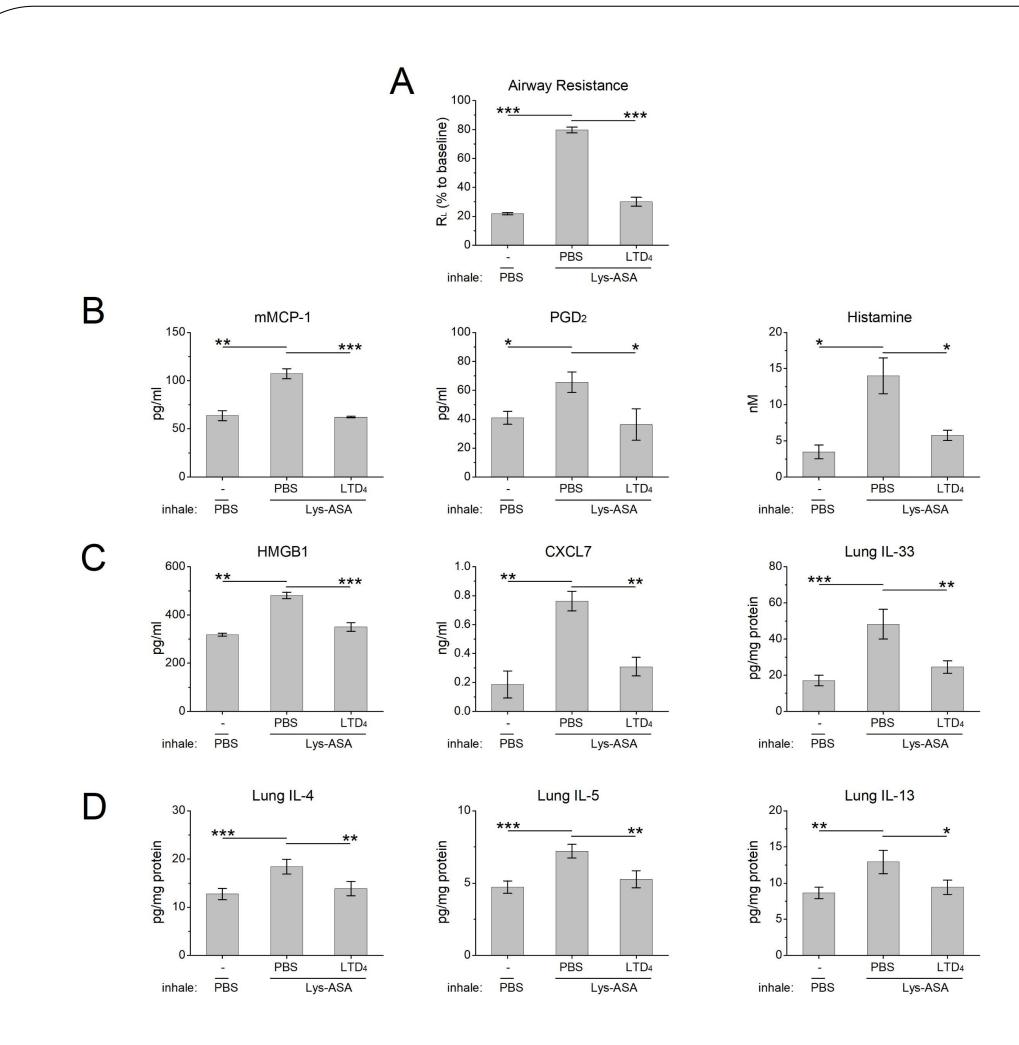

Figure 2. LTD₄ blocks the release of soluble mediators from mouse and human platelets activated by LTC₄. PRP from WT mice (A) or healthy human volunteers (B) were stimulated for 30 min with LTC₄ in the absence or presence of the indicated agonists or antagonists. CXCL7 and TXB₂ (as a surrogate for TXA₂ production) were measured in the supernatants by ELISA. * p<0.05, **p<0.01, ***p<0.001.

Figure 3. LTD₄ blocks amplification of OVA-induced pulmonary inflammation induced by LTC₄ but not by LTE₄. WT mice were sensitized on days 0 and 7 with OVA/Alum IP. On day 14-16, mice received single intranasal doses (2.2 nmol) of the indicated cysLTs, followed 12 h later by inhaled OVA (0.1% for 30 min). BAL fluid and lung tissue were collected 24 h after the last dose of OVA. **A.** Total BAL fluid cell counts (left) and eosinophil counts (right). **B.** Numbers of ILC2s in dispersed lung tissue from the indicated groups. **p<0.01, ***p<0.001.

Figure 4. Effect of LTD₄ **on lung cytokines and BAL fluid mediators induced by LTC**₄ **and LTE**₄. **A.** ELISA measurements of IL-33, IL-4, IL-5 and IL-13 in whole lung lysates from WT OVA sensitized and challenged mice receiving the indicated cysLTs. **B.** measurements of HMGB1 and CXCL7, and **C.** soluble adhesion receptors from the same mice as in **A.** * p<0.05, **p<0.01, ***p<0.001.

Figure 5. Inhaled LTD₄ blocks AERD-like reactions to lysine aspirin challenges of *Ptges*--- mice. *Df*-primed *Ptges*--- mice were challenged by inhalation of PBS or Lys-ASA. Some mice received a single inhaled dose of LTD₄ 30 min before challenge. **A.** Maximum percent change in R_L monitored continuously for 45 min after the administration of Lys-ASA or PBS. **B.** Levels of MC activation markers (mMCP-1, histamine, PGD₂), platelet activation markers (CXCL7 and HMGB1) in BAL fluids from the indicated groups of mice. Whole lung levels of IL-33 (**C**) are shown from the same mice. **D.** Whole lung levels of IL-4, IL-5, and IL-13 from the indicated groups of mice. *p<0.05, **p<0.01, ***p<0.001.

Conclusions

- LTD₄ behaves as a functional antagonist of LTC₄ signaling at CysLT₂R.
- The conversion of LTC₄ to LTD₄ may limit the duration and extent of potentially pathological signaling through CysLT₂R and may contribute to the therapeutic properties of therapeutic desensitization to aspirin.

This work is supported by NIH grants Al052353-R37, Al078908-R01, Al095219-U19, Al136041-R01, HL136209-R01, by generous contributions from Vinik Family, and Kaye and Karol Families.