Ad polarized alarmin gene expression increases the risk of atopic dermatitis (AD) in children

Janet M. Griffiths1, Srimi Sridhar1, Monica Gavala1, Tuyet-Hang Pham1, Yochelo Ohme2, Melissa de los Reyes2, Fernanda Piletaxis2, Ioannis Kagiappakis3, Jane R. Parens2, Steven Komajda4, Caroline Bronchick5, Donald Y. M. Leung6, Elena Goleva7

1 Co-leads: Translational Science & Experimental Medicine, Early Pregnancy, Inflammation & Autoimmunity (EW, B) / Pharmacology & Antii-infectives, Asthma, Gastroenterology, Miami, USA; 2 Translational Science, Early Oncology, Oncology & Radiology, Asthma, Gastroenterology, Miami, USA; 3 Miscellaneous, Gastroenterology, Inflammation & Autoimmunity (B), BioPharmaSciences & Asthma, Miami, USA; 4-5, 7-8: Thousand Oaks, CA; 6: National Jewish Health, Denver, CO, USA

Elevated TSLP and IL-33 signaling ... pediatric AD.

Atopic dermatitis biomarker analysis points to elevation of TSLP and IL-33 signaling and suggests a role for type 2 innate lymphoid cells

Janet M. Griffiths1

1 Co-leads: Translational Science & Experimental Medicine, Early Pregnancy, Inflammation & Autoimmunity (EW, B) / Pharmacology & Antii-infectives, Asthma, Gastroenterology, Miami, USA

Atopic dermatitis (AD) is a chronic, inflammatory skin disease of unknown etiology, affecting approximately 10% of the world’s population. The pathogenesis of AD is characterized by dysregulated immune responses and skin barrier dysfunction. Epithelial-derived "danger signaling" cytokines called alarmins are a class of proinflammatory cytokines that are released following tissue damage. These cytokines activate downstream signaling pathways that are involved in the induction of inflammation and immune responses. Alarmin activity can be assessed through gene expression or alarmin peptide levels, providing insight into the activation status of alarmin-responsive immune cells.

Objective

To investigate the role of alarmin activity in the development of AD, we aimed to:

1. Identify and validate biomarkers of alarmin activity in AD
2. Compare alarmin activity in lesional and nonlesional skin of AD patients with healthy controls
3. Examine the role of alarmin activity in the development of AD

Methods

- **Patients and samples**: AD patients were recruited from National Jewish Health in Denver, CO, USA, and healthy controls were recruited from similar demographics. Skin samples were collected from lesional and nonlesional skin sites.
- **Gene expression analysis**: Using microarrays, gene expression levels were compared between AD lesional and nonlesional skin and healthy controls.
- **Alarmin peptide expression**: TSLP and IL-33 peptide levels were measured using liquid chromatography-tandem mass spectrometry (LC-MS).

Results

- **Demographics and clinical characteristics**: Demographics were similar between AD patients and healthy controls.
- **Gene expression analysis**: Top genes upregulated in AD lesional skin included TSLP, IL-33, and other alarmin-related genes.
- **Alarmin peptide expression**: TSLP and IL-33 peptide levels were significantly elevated in AD skin compared to healthy controls.

Conclusions

- Alarmin activity may play a role in the development and maintenance of AD.
- Elevation of TSLP and IL-33 signaling in skin biopsy and skin tape strips from patients with AD
- Increased TSLP and IL-33 peptide expression measured in skin tape strip samples from patients with AD

References

Acknowledgments

Marike F. M. M. van der Wijst, MD, MS, PhD, is supported by an Institutional National Institutes of Health (NIH) Director’s New Innovator Award (1-DN1-OD011822-01; MD002085) and the Intramural Research Program of the NIH National Institute of Allergy and Infectious Diseases (NIAID). Biological samples were obtained with permission from the National Jewish Health Research Institute Institutional Review Board. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Funding

This study and medical writing support were cosponsored by AstraZeneca JK Associates Inc., a member of the Fishawack Group of Companies.