Massively Parallel Reporter Assays (MPRAs) Identify Allelic Transcriptional Dysregulation in Atopic Dermatitis

Amy A. Eapen*, Xiaoming Lu*, Xiaoting Chen*, Carly Forney, Daniel Miller, Sreeja Parameswaran, John P. Ray, Carl G. de Boer, Matthew T. Weirauch*, Leah C. Kottyan*; *Contributed Jointly; #Co-corresponding

Background
- 20% of children develop atopic dermatitis (AD)
- 10-30% AD children have persistent disease as adults
- CD4+ T cells produce inflammatory cytokines and contribute to dysfunction of the skin barrier
- There is a strong genetic component to AD development as documented by twin concordance studies
- Genome-wide association studies have identified 29 independent genetic risk loci associated with AD (p<5x10^-8)
- 95% of these genetic risk variants are non-coding

Experimental Design
- 3,143 SNPs and insertions/deletions accounting for 29 independent loci.
- Loci were identified from 122 reported “tag” variants reaching genome-wide significance.
- 150 bp around each SNP.
- Calibration oligos that are from genetic variants that have been previously shown to be allelic or not in previous MPRAs assays.
- 300-500 tags per allele (oligo)*
- Replicates – 5 transfections/condition
- Sequencing → 30-fold coverage

Schematic of MPRA design and library preparation

Massively Parallel Reporter Assays
- MPRAs allow us to assess gene regulatory activity of DNA surrounding 1000's of genetic variants at the same time.
- Any cell type
- Any condition (e.g., stimulation, therapeutics)
- A pool of reporter constructs is assembled.
- DNA “tags” are used instead of luciferase as a reporter.
- Each reporter is made many times with many different tags.
- Pool is transfected into cells.
- Measures enhancer activity and genotype-dependent enhancer activity.

Enhancer activity at AD risk variants
- 619 AD oligos → 302/3143 variants have enhancer activity (p<0.05, >50% change)

Genotype-dependent Enhancer Activity at AD-disease risk variants
- Ongoing work
 - Different cell lines + stimulation – e.g., HaCaT (immortalized human keratinocytes) and Jurkat (immortalized human T cells) +/- TNFα
 - Integration with other functional genomics data to nominate causal allelic transcriptional regulatory mechanisms at AD disease risk variants.
 - Complement with eQTL data, chromatin conformation assay data, genome-editing to identify genes that are regulated by SNPs.

Conclusions
Our results are consistent with a model in which AD genetic risk variants regulate gene expression in a genotype-dependent manner. We nominate 108 plausibly causal variants for AD.

Genotype-dependent Enhancer Activity at AD-disease risk variants: Example locus

*There are no STAT6 "motifs" in HOMER, but all STATs bind similar DNA sequences.

Effect of IL13 on enhancer activity at AD risk variants

The DNA sequence around variants with IL13 dependence were enriched for STAT* and IRF motifs.

GTEx – skin biopsy

There are 98 variants in LD with rs6729638 (r2>0.8), and we know the single variant with allelic activity (MPRA) and the gene affects (eQTL)!