Atopic Dermatitis Skin Biopsies Have High Numbers of Activated Mast Cells that Are Inhibited by Antolimab (AK002) After Stimulation Ex Vivo
Bradford A. Youngblood, Simon Gebremeskel, Alan Wong, Julia Schanin, Amol P. Kamboj, and Nenad Tomasevic
Alaks Inc. Redwood City, CA

BACKGROUND
- Loss of epithelial barrier integrity is a critical step in the development of atopic dermatitis (AD) whereby the alarmin cytokines IL-33 and TSLP activate inflammatory cells such as mast cells (MCs) (Figure 1).
- While MCs have been shown to be elevated AD, there is need for further characterization of their pathogenic role.

METHODOLOGY
- Single-cell suspensions were prepared by enzymatic & mechanical digestion of fresh biopsies from patients clinically diagnosed with AD (n=6) or disease control subjects (n=10).
- Multi-color flow cytometery was performed to quantify immune cells and evaluate the activation state of eosinophils & mast cells as shown in Figure 4.
- Mast cells were FACS-sorted from AD biopsies or non-diseased skin tissues followed by overnight incubaition with or without PMA/albumin.
- Cell-free supernatants were collected the following day and cytokines were quantified using meso scale discovery (MSD) system.

RESULTS
- The following cytokines were analyzed: IL-4, IL-5, IL-6, IL-10, IL-13, IL-18, GM-CSF, INFγ, TNFα, CCL2, CCL3, CCL4, and VEGF.

DISCUSSION
- • Siglec-8 expression remains high on human skin mast cells independent of disease state
- • Resting mast cells in AD skin tissue display high levels of activation as evidenced by decreased surface markers of activation and cytokine production
- • Mast cells in AD skin biopsies are activated by IL-33/TSLP suggesting they are important target cells for alarmin cytokines released by epithelial cells
- • Treatment with AK002 significantly reduces IL-33/TSLP mast cell activation as evidenced by decreased surface markers of activation and cytokine production

CONCLUSIONS
- • Human skin mast cells express the inhibitory receptor Siglec-8, and activation of mast cells via FcεRI is inhibited with antolimab
- • Mast cells are elevated in number and are basally activated in AD biopsies with high levels of surface-bound IgE
- Antolimab inhibits IL-33/TSLP-mediated mast cell activation in AD skin biopsies, suggesting antolimab can broadly inhibit multiple modes of mast cell stimulation including, IgE, IL-33, and TSLP
- Mast cells appear to be important in AD, and targeting mast cells via Siglec-8 with antolimab may represent a novel therapeutic approach to the treatment of AD and other allergic diseases

REFERENCES
- Presented at the American Academy of Allergy, Asthma & Immunology (AAAAI), Philadelphia, PA, March 13th