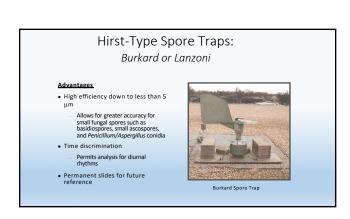
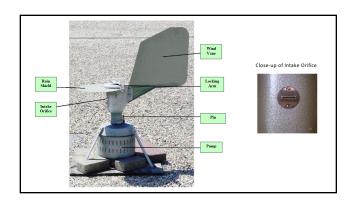

## Establishing and Operating an Air Sampling Station What to consider: • Sampling plan or objective • Samplers: Rotorod, Burkard spore trap (i.e. Hirst-type spore trap) • Location • One-day head or 7-day head for Burkard spore trap • Preparing samples • Slide analysis • Identification • Calculating the data • NAB certification





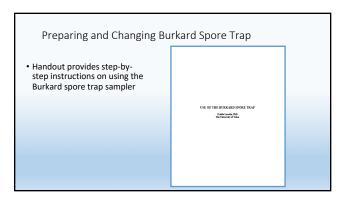

### Rotorod° Samplers • Models typically used have retracting rods • Head rotates at 2400 rpm, leading edge of rod coated with silicon grease • Pollen and spores impacted on greased surface • Generally operated at 10% sampling time • Efficient for pollen and spores >10 μm





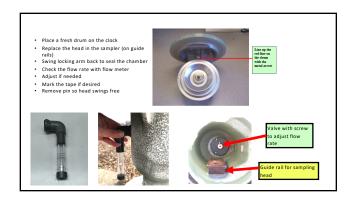

## Rotorod® Calculations C = N / V C is concentration, N is the number of pollen or spores counted on both rods®, V is the volume of air sampled by the rods V = Rod area (m²) x D x \pi x x RPM x t Rod area = width of rod (1.52\*\* mm = 0.00152\* m) x length of the rod (23 mm = 0.023 m) x 2 (both rods), D is the diameter of the Rotorod head (8.5 cm = 0.085 m), RPM is 2400, it is mituted sampled per day With a 10% sampling time (144 min) V = 6.452 m³ Concentration = N/6.452 m³ With a 5% sampling time (72 min) V = 3.226 m³ Concentration = N/3.226 m³ \*Adjust calculations if only one rod is counted

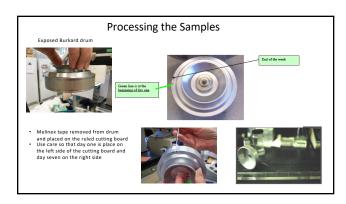



## LOCation Roof of a building - ideal 3 to 6 stories above ground (30 to 60 ft) Not close to overhanging vegetation Air flow not obstructed by nearby buildings, walls, or other structural features Sampler should be level



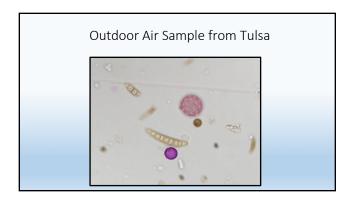




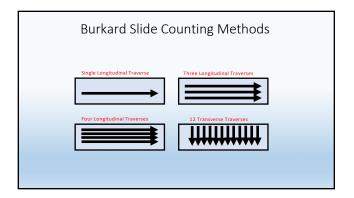




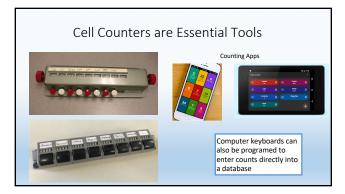



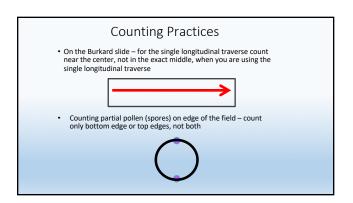




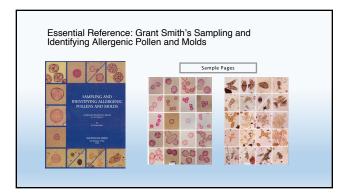




### Slide Analysis

- Microscopy 400X for pollen; 1000X (oil immersion) for fungal spores
- Different methods of microscopic analysis are used
  - Average daily concentration Single longitudinal traverse or multiple longitudinal traverses
  - Hourly or bihourly concentrations which can then be averaged to obtain a daily average - 12 transverse traverses

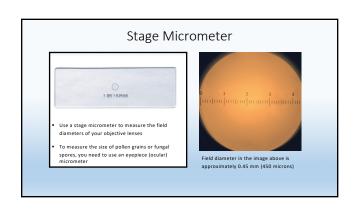



### Comparison of Methods Single Longitudinal Traverse • Quicker • Produces average daily concentration • Good for routine monitoring • 2, 3, or 4 longitudinal traverses can increase accuracy Comparison of Methods • Takes longer • Can determine diurnal rhythm of airborne allergens • All traverses can be averaged to determine average daily concentration





# Identification AAAAI Aeroallergen courses Other aerobiology courses such as the New Orleans Aeroallergen Course Reference slides Reference slides from local specimens Consult a botanist at a local university NAB/AAAAI Pollen Slide Library Identification Manuals


### Identification Manuals • Grant Smith. 2000. Sampling and Identifying Allergenic Pollens and Molds, AAAAI, Milwaukee • R.O. Kapp, How to Know Pollen and Spores - originally published in 1960s - new edition • Richard Weber. 1998. Pollen Identification Ann Allergy Asthma Immunol 80:141-7. • Lacey, Maureen and J. West. 2006. The Air Spora: A Manual for Catching and Identifying Airborne Biological Particles, Springer. • Lewis WH, Vinay P, Zenger VE. 1983. Airborne and Allergenic Pollen of North America. Johns Hopkins University Press, Baltimore, MD. • Aeroallergen Photo Library, Steve Kagan, http://allernet.net/ • Jelks M. 2003. Pollen Key





Converting Raw Counts to Concentrations

Microscope counts are entered into a database such as Excel
Formulas added to convert counts into concentrations
Information needed
Field diameter of objective lens - Variable
Flow rate (10 liters/minute) and exposure time (normally 24 hrs.) for a total volume of air sampled of 14.4 m³



Calculating Pollen Concentrations for Single
Longitudinal Traverse at 400X

C = N/V

• C = Concentration - pollen grains/m³

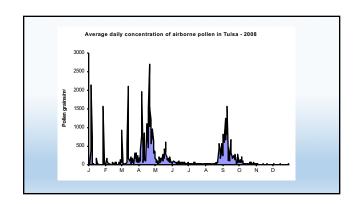
• N = number of pollen counted on traverse

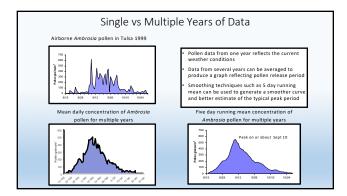
• W = Width of entire sample - 14 mm

• F = field diameter of my 40X objective lens - 0.48 mm

• V = total volume of air sampled - 14.4 m³

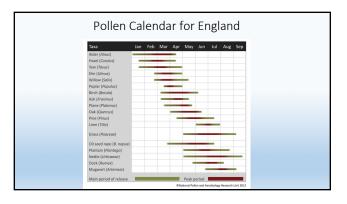
C = N x W/F x 1/V


C = N x 14mm/0.48mm x 1/14.4m³


C = N x 2.025

| Example of a Spreadsheet |      |       |          |           |        |          |       |        |
|--------------------------|------|-------|----------|-----------|--------|----------|-------|--------|
| Date                     | Acer | Alnus | Ambrosia | Artemisia | Betula | Carpinus | Carya | Celtis |
| 25 Mar 2020              | 4    | 0     | 2        | 0         | 58     | 4        | 0     | 49     |
| 26 Mar 2020              | 8    | 0     | 0        | 0         | 75     | 2        | 0     | 51     |
| 27 Mar 2020              | 12   | 0     | 0        | 0         | 140    | 6        | 0     | 106    |
| 28 Mar 2020              | 2    | 0     | 0        | 0         | 10     | 0        | 0     | 12     |
| 29 Mar 2020              | 0    | 0     | 0        | 0         | 20     | 0        | 0     | 14     |
| 30 Mar 2020              | 0    | 0     | 0        | 0         | 32     | 2        | 0     | 20     |
| 31 Mar 2020              | 0    | 0     | 2        | 0         | 28     | 0        | 0     | 19     |
| 1 Apr 2020               | 2    | 0     | 0        | 0         | 41     | 2        | 0     | 68     |
| 2 Apr 2020               | 4    | 0     | 0        | 0         | 18     | 2        | 0     | 24     |
| 3 Apr 2020               | 2    | 0     | 0        | 0         | 22     | 0        | 0     | 20     |
| 4 Apr 2020               | 0    | 0     | 0        | 0         | 4      | 0        | 2     | 4      |
|                          |      |       |          |           |        |          |       |        |

### How the Data Can Be Used


- Average daily concentrations can be graphed to look at the seasonal and yearly pollen levels
- Develop regional pollen calendar
- Data can be compared with patient symptoms, peak flow readings, office visits, emergency room visits
- Prepare for peak seasons staffing, etc.



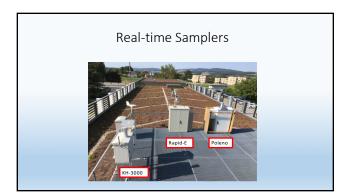


### Pollen Calendars

- Graphs or charts depicting the annual pollen release period for the major airborne pollen or spore types in a given area
- Several methods for showing the pollen
- At least 5 years of data (10 years are better) are needed to develop the pollen calendar



### **NAB** Certification


- 1. Take an aeroallergen course
  - Contact Melissa Ramsey at the AAAAI
- 2. Take the on-line exam
- 80% correct is passing
- 3. Take the pollen test (and/or spore test)
  - 80% correct is passing

### Knowledge Base for Counters

- 1. Good microscope skills
- 2. Knowledge of air sampling and analysis
- 3. Knowledge of pollen morphology
- 4. Knowledge of pollen seasons
- 5. Knowledge of spore morphology
- 6. Knowledge of spore dispersal and fungal biology

### Conclusion

- Air sampling allows the allergist to get a first hand understanding of the local aeroallergens, their concentration, and seasonal occurrence
- Several years of sampling will allow for the development of a pollen calendar which can benefit the physician and his or her patients

