Immunology: Beyond the Textbook

Paneez Khoury, Drew White, Becky Scherzer
Learning Objectives

1. Understand varied approaches to developing clinical and basic immunology curricula beyond the “textbook”
2. Implement common adult learning theory concepts
3. Elevate learning approaches to immunology
Curriculum goals and development

Educational content as well as delivery options

Incorporate playfulness and fun

Use variation in approaches:
  - Gamefication or “serious games”
  - Alter space/environment

Q Do you have a curriculum for basic immunology

TIPS FOR SUCCESS

Begin at the end: Identify desired outcome, and work backwards!

Create learning objectives and establish relevance: adult learners need to know “why”

Consider content AND approach
### What is your age?

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-35</td>
<td>0%</td>
</tr>
<tr>
<td>36-45</td>
<td>0%</td>
</tr>
<tr>
<td>46-55</td>
<td>0%</td>
</tr>
<tr>
<td>55+</td>
<td>0%</td>
</tr>
<tr>
<td>Duration</td>
<td>Percentage</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>0-3 years</td>
<td>0%</td>
</tr>
<tr>
<td>4-6 years</td>
<td>0%</td>
</tr>
<tr>
<td>7-12 years</td>
<td>0%</td>
</tr>
<tr>
<td>12+ years</td>
<td>0%</td>
</tr>
</tbody>
</table>
How many clinical fellows join your program each year?

1 0%
2 0%
3 0%
4 0%
More than 4 0%
<table>
<thead>
<tr>
<th>Role</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Director</td>
<td>0%</td>
</tr>
<tr>
<td>Associate Director</td>
<td>0%</td>
</tr>
<tr>
<td>Clinical Teaching Faculty</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
</tr>
</tbody>
</table>
Are your immunology lectures/sessions:

- Predominantly in person: 0%
- Predominantly virtual: 0%
- Equally in person and virtual: 0%
- None of the above: 0%
- Something else (e.g. a separate course): 0%
How many people at your institution are responsible for teaching immunology?

- Its fellow led, faculty are not involved: 0%
- Just the PD and/or APD: 0%
- PDs and other core faculty: 0%
- PDs, core faculty and other immunology faculty: 0%
- None of the above: 0%
Q: “Real world examples” or best practices for curriculum development in your programs
Flipped classrooms

Traditional classroom

Flipped Classroom
### How often is a flipped classroom used for teaching immunology in your program?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>0%</td>
</tr>
<tr>
<td>Sometimes</td>
<td>0%</td>
</tr>
<tr>
<td>Frequently</td>
<td>0%</td>
</tr>
<tr>
<td>Almost all the time</td>
<td>0%</td>
</tr>
</tbody>
</table>
Retrieval practice

Retrieval is a strategy not an assessment

Allows for deeper connections, and organization of knowledge

Agarwal P. Retrieval Practice Consistently Benefits Student Learning: a Systematic Review. Educational Psychology Review 2021
Approaches to Retrieval Practice

Think-pair-share

Hints

“Two things”

“Brain dumps”

Practical Challenges

Real-time retrieval
Make a simple switch

encode

Here's what we did last week.

retrieve

What did we do last week?
Spaced Learning

Spaced Practice
(3 lessons over three days)

Lesson 1
(10 minutes)
1 day

Lesson 2
(10 minutes)
1 day

Lesson 3
(10 minutes)
7 days

Massed Practice
(3 lessons over the same day)

Lesson 1
(10 minutes)

Lesson 2
(10 minutes)
7 days

Lesson 3
(10 minutes)

Mean Test Score

Spaced Practice
(3 lessons over three days)

Massed Practice
(3 lessons over the same day)

75%

55%
Q: Are there other books or resources programs have used or provide to faculty related to optimal learning or teaching?
Interleaving

Variety (content or type of problem/presentation)

Interspersing or building on concepts
Q: “Real world examples” or best practices for learning in your programs
The Illusion of Mastery

Rohrer, Dedrick, and Stershic (2015)
Level of engagement and performance

![Yerkes-Dodson Law Bell Curve]

**YERKES-DODSON LAW BELL CURVE**

- **Optimal arousal and optimal performance**
- **Increasing attention and interest**
- **Impaired performance because of strong anxiety**
Serious Games (that aren’t hard)

Jeopardy (Board review)
Kahoot
Polling
Incentives (bribery?)
Quick recall e.g. “Name that”
Battle of the Biologics
Simple immunology games
More complex immunology games
Generative Practices

Active participation in learning

Tools or methods can be adapted to suit the learners and topics

Methods can include:

- Drawing
- Building (Blocks etc)
- Explaining
- Mapping
Generative practice with 2D printing activities
Simple but “serious” games
Types of 3D printing activities
Example of a 3D printing activity in a flipped classroom

**Before you begin...**
1. Label the light chains of this antibody with the letter “L.”
2. Label the heavy chains of this antibody with the
3. Draw rectangles around the variable regions on this
4. Circle the constant region(s) on this antibody.
5. Draw an arrow to the region that may bind to a specific
6. Draw a star on the region of this antibody that determines its isotype/class.

7. What is/are the antigen(s) in this picture?
8. Where are the potential epitopes?

**After this activity, you should be able to:**
1. Describe how antigens and epitopes are related.
2. Explain why some antibodies get made that do not bind to any epitopes.
3. Discuss which regions on the heavy and light chains come together to bind to a specific epitope.
4. Identify the region on the antibody that determines its class or isotype.
Q: “Real world examples” in your programs
Authentic learning spaces

Psychological safety: all of the activities described are best in a no or “low” stakes environment

Allow mistakes, and use feedback as an opportunity for growth

Encourage trainees to innovate and bring their creativity to the teaching too!

Building on foundations: (reflect, refer to what happened in clinic or on consult case)

TIPS FOR SUCCESS

Provide Autonomy and Options
“Should we play again, or move on…”

Define goals of the game or activity
“We’re playing this because…”
Provide facilitation and encouragement
Use the game as a medium to provide teaching

Encourage cooperation, or engender competition in groups
Have fun with the trainees
How to teach Immunobiology?
A step before that……?
Why create a basic immunology course?

- A core understanding of basic immunology required for all A/I fellows
- Many fellows start training without much basic immunology knowledge
  - Limited immunology curriculum in most medical schools
- Fellowship level textbooks start with very complex information
- An into to immunobiology could benefit many of our learners
  - A/I fellows are the target audience
  - Other groups may benefit:
    - Immunology APNs
    - Fellows in other specialties
- Will be available to all fellowships/trainees
The leading interactive whiteboard for teaching

Create interactive lessons, record video tutorials and collaborate real-time with your students.

START FOR FREE →

Get a free Explain Everything demo for your school or institution! 🌐
Interactive Whiteboard Example

- CD4
  - MHC Class II
  - B cells, Mφ, DC
  - Exogenous

- CD8
  - MHC Class I
  - All nucleated cells
  - Endogenous

- Large shape
  - Symbol
Proposed Topics For the Course

- Overview of the Immune System - Innate vs Adaptive
- Cells of the Immune System
- Secondary immune organs
- Complement Cascade
- Complement regulation
- Innate Immunity (TLR)
- Neutrophil function and respiratory burst (CGD)
- B cell development
- T cell development (APECED)
- B cell and T cell receptor generation (RAG deficiency)
- Antigen processing
- T cell signaling
- NFkB (NEMO)
- B cell signaling
- Antibody function
- Class switching (CD40L deficiency)
- T helper cell subtypes (Th1)
- T helper cell subtypes (Th2)
- T helper cell subtypes (Th17)
- Mast cells
- Eosinophils
- Immunology lab tests - Flow cytometry (How to do it, FSC vs SSC, markers)
- Immunology lab tests - Targetted vs WES, VUS
What is your feedback on the particular topics chosen? Are there topics missing that you would add?

- Overview of the Immune System
- Innate vs Adaptive
- Cells of the Immune System
- Secondary immune organs
- Complement Cascade
- Complement regulation
- Innate Immunity (TLR)
- Neutrophil function and respiratory burst (CRID)
- B cell development
- T cell development (APECED)
- B cell and T cell receptor generation (RAG deficiency)
- Antigen processing
- T cell signaling
- NFkB (NEMO)
- B cell signaling
- Antibody function
- Class switching (CD40L, deficiency)
- T helper cell subtypes (Th1)
- T helper cell subtypes (Th2)
- T helper cell subtypes (Th17)
- Mast cells
- Eosinophils
- Immunology lab tests - Flow cytometry (How to do it, FSC vs SSC, markers)
- Immunology lab tests - Targeted vs WES, VUS

Nobody has responded yet.

Hang tight! Responses are coming in.
Rate this project in terms of urgency and importance. X = urgency (right quadrants are most urgent) and Y = importance (top quadrants are most important).
Open Discussion!!