Make It Stick: A Review of the Science of Learning

Jennifer Spicer, MD, MPH Assistant Professor of Medicine Emory University School of Medicine

Disclosures

None of the faculty for this educational activity have relevant financial relationships with ineligible companies to disclose.

Learning Objectives

Describe evidence-based learning principles

Provide concrete examples of their use

Incorporate into classroom & clinical teaching

Evidence-Based Learning Principles

Evidence-Based Learning Principles

How we process information

Cognitive Load Theory: Optimizing information processing

Strategies to manage cognitive load

	Definition	Strategies
Intrinsic Load	Complexity of the content or task being learned	
Extraneous Load	Unnecessary information or <u>distraction</u> from the task	
Germane Load	Effort required to <u>organize</u>	

Strategies to manage cognitive load

		Definition	Strategies
Ļ	Intrinsic Load	र Complexity of the content or task being learned	
	Extraneous Load	Unnecessary information or <u>distraction</u> from the task	
	Germane Load	Effort required to <u>organize</u>	

		Definition	Strategies
Ļ	Intrinsic Load	Complexity of the content or task being learned	 Assign "pre-reading" to familiarize Decrease or simplify content Use analogies to familiar concepts Build complexity over time ("spiral")
	Extraneous Load	Unnecessary information ↓ ↓ ↓ or <u>distraction</u> from the task	
	Germane Load	Effort required to organize ••• the content or task	

		Definition	Strategies
Ļ	Intrinsic Load	Complexity of the content or task being learned	 Assign "pre-reading" to familiarize Decrease or simplify content Use analogies to familiar concepts Build complexity over time ("spiral")
Ļ	Extraneous Load	Unnecessary information or <u>distraction</u> from the task	
	Germane Load	Effort required to <u>organize</u> •••• the content or task	

		Definition	Strategies
Ļ	Intrinsic Load	or task being learned	 Assign "pre-reading" to familiarize Decrease or simplify content Use analogies to familiar concepts Build complexity over time ("spiral")
Ļ	Extraneous Load	Unnecessary information ↓ ↓ ↓ or <u>distraction</u> from the task	 Provide a single learning resource Limit text & pictures on visuals Eliminate external distractions
	Germane Load	Effort required to <u>organize</u>	

		Definition	Strategies
Ļ	Intrinsic Load	or task being learned	 Assign "pre-reading" to familiarize Decrease or simplify content Use analogies to familiar concepts Build complexity over time ("spiral")
Ļ	Extraneous Load	Unnecessary information ↓ ↓ ↓ or <u>distraction</u> from the task	 Provide a single learning resource Limit text & pictures on visuals Eliminate external distractions
Î	Germane Load	Effort required to organize ••• the content or task	

		Definition	Strategies
Ļ	Intrinsic Load	र Complexity of the content or task being learned	 Assign "pre-reading" to familiarize Decrease or simplify content Use analogies to familiar concepts Build complexity over time ("spiral")
Ļ	Extraneous Load	Unnecessary information or <u>distraction</u> from the task	 Provide a single learning resource Limit text & pictures on visuals Eliminate external distractions
Î	Germane Load	Effort required to organize ••• the content or task	 Refer to previously learned content Organize information for learners

Dual-Channel Processing: Improving Presentations

Mayer's Multimedia Principles: reduce extraneous load

Pre-training: Key terms & concepts

Multimedia: Wultimedia: Words + pictures > words

• Coherence: Eliminate the "extra"

Spatial & temporal contiguity: Words & pictures near each other and simultaneous

Mayer, R. E. & Moreno, R. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educ Psychol 38, 43-52 (2003).

Applying Mayer's multimedia principles improves learning

BEFORE

AFTER

Issa, N. et al. Applying multimedia design principles enhances learning in medical education. Med Educ 45, 818-826 (2011).

Applying Mayer's multimedia principles improves learning

AFTER

Changes in wave tracings during PAC insertion indicate it's position relative to the R ventricle.

Issa, N. et al. Applying multimedia design principles enhances learning in medical education. Med Educ 45, 818-826 (2011)

Applying Mayer's multimedia principles improves learning Signaling principle: highlight essential material BEFORE AFTER Swan-Ganz (PAC) insertion is like Changes in wave training bac insertion 'Surfing through Blood Stream' indicate it's position relative to the R ventricle. ittight strium Pulsionary artery 36 wedge 16 1.0 16 Right ventricle Pulmenary artery Spatial contiguity principle: place words & pictures near to each other

Advanced Organizers: optimize germane load

Advanced Organizers: Examples

Pitt MB, Orlander JD. Bringing mini-chalk talks to the bedside to enhance clinical teaching. Med Educ Online. 2017;22(1):1264120. doi: 10.1080/10872981.2017.1264120. PMID: 28178911; PMCID: PMC5328338.

Summary: practical strategies to help people "understand"

Prep materials before session to familiarize with terms & concepts

Break down concepts into small chunks and build over time

Eliminate material that isn't absolutely essential

Organize terms & concepts to help learners see connections

Non-expert review

Clean up slides

Guided handouts Advanced organizers

Evidence-Based Learning Principles

Cognitive science principles

Cognitive science principles

	Term	Definition	Example
}	Retrieval	Pulling information from memory	Flashcards Test/quiz questions
	Spaced Practice		
≯	Interleaving		
	Elaboration		

Cognitive science principles

	Term	Definition	Example
P	Retrieval	Pulling information from memory	Flashcards Test/quiz questions
	Spaced Practice	Revisiting material over time	Studying a little each day Anki flashcard platform
ス	Interleaving		
••••	Elaboration		

Cognitive science principles

	Term	Definition	Example
P	Retrieval	Pulling information from memory	Flashcards Test/quiz questions
	Spaced Practice	Revisiting material over time	Studying a little each day Anki flashcard platform
以	Interleaving	Mixing up topics when studying	Mixed problem sets Compare & contrast tables
•••	Elaboration		

Cognitive science principles

	Term	Definition	Example	
P	Retrieval	Pulling information from memory	Flashcards Test/quiz questions	
	Spaced Practice	Revisiting material over time	Studying a little each day Anki flashcard platform	
ぷ	Interleaving	Mixing up topics when studying	Mixed problem sets Compare & contrast tables	
•••	Elaboration	Explaining concepts & connecting them to prior knowledge	"How" & "why" questions Creating concept maps	

Cognitive science principles: clinical examples

Patient care

Case Discussions

Chalk Talks

Clinical decision-making (retrieval)

Seeing varied patients (spacing, interleaving)

Asking learners questions (retrieval, elaboration)

Asking learners questions (retrieval, elaboration)

Applying to patients (spacing)

Explicitly teach interleaving: Compare & contrast table

	Epidemiology	Time course	Imaging Features	Diagnostic testing
Tuberculosis				
Anaerobic abscess				
Lung cancer				

	Geographic Location	Seasonality	Rash	Characteristic Lab FIndings
Anaplasma				
Ehrlichia				
Lyme				
RMSF				

Cognitive science principles: classroom examples

+/-Elaboration Spaced practice Interleaving

Example: In-class questions (PollEverywhere)

 When poll is active, respond at PollEv.com/jspicer is Text JSPICER to 22333 once to join 				
How does Mycobacterium tuberculosis avoid intracellular killing in macrophages?				
 " prevents phagolysosome fusion and if it does occur prevents phagolysosome maturation " " catalase " " prevents fusion of lysosome with phagosome " " prevents phagosome-lysosome fusion " 				
Powered by II Poll Everywhere				

Example: In-class questions (PollEverywhere)

Cognitive science principles: classroom examples

Example: Partial lecture outline

Cognitive science principles: classroom examples

Example: Electronic Flashcards (Anki)

Cognitive science principles: classroom examples

Create desirable difficulty to enhance learning

Gooding, H. C., Mann, K. & Armstrong, E. Twelve tips for applying the science of learning to health professions education. *Med Teach* **39**, 1–6 (2016). Cecilio-Fernandes, D., Patel, R. & Sandars, J. Using insights from cognitive science for the teaching of clinical skills: AMEE Guide No. 155. *Med Teach* **ahead-of-print**, 1–10 (2023)

The zone of proximal development: clinical examples

Zone of proximal development

Example

Placing a difficult IV

Assistance provided

Direct supervision w/ demo

The zone of proximal development: clinical examples

Zone of proximal development

Example

Placing a difficult IV Dosing an aminoglycoside

Assistance provided

Direct supervision w/ demo Handout with instructions

The zone of proximal development: clinical examples

Zone of proximal development

Example

Placing a difficult IV Dosing an aminoglycoside Breaking bad news

Assistance provided

Direct supervision w/ demo Handout with instructions Role play → supervision

The zone of proximal development: classroom examples

Zone of proximal development

Example

Assistance provided

Multiple-choice questions

Answer with explanation

The zone of proximal development: classroom examples

Zone of proximal development

Example

Multiple-choice questions Clinical problem set

Assistance provided

Answer with explanation Group work

Application of Knowledge

Generation

Ability to **solve problems** independently prior to seeing the solutions

Transfer

Ability to apply learning to <u>new</u> and <u>varied</u> contexts

Generation & Transfer: clinical example

Generation & Transfer: classroom example

Case-based learning

PBL (Problem-based (1 learning)

TBL (Team-based learning)

Deliberate Practice: experience does not equal expertise

Ericsson, K. A. Deliberate Practice and the Acquisition and Maintenance of Expert Performance in Medicine and Related Domains. Acad Med 79, S70-S81 (2004).

Deliberate practice requires feedback

Deliberate practice: examples

Communication

Feedback: Patient response

Clinical reasoning

Feedback: Clinical outcomes

Procedures

Feedback: Procedure success

References

Cecilio-Fernandes, D., Patel, R. & Sandars, J. Using insights from cognitive science for the teaching of clinical skills: AMEE Guide No. 155. Med Teach ahead-of-print, 1–10 (2023).

Gooding, H. C., Mann, K. & Armstrong, E. Twelve tips for applying the science of learning to health professions education. Med Teach 39, 1–6 (2016).

Cutting, M. F. & Saks, N. S. Twelve tips for utilizing principles of learning to support medical education. Med Teach 34, 20–24 (2011).

Nebel C, DeLaat A, Heublein M, Kryzhanovskaya E. "#34 Science of Learning. The Curbsiders Teach Podcast. <u>https://thecurbsiders.com/teach</u>. June 6, 2023.

